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Abstract

In this study, our objective was to assess the performance of two deep learning-

based hippocampal segmentation methods, SynthSeg and TigerBx, which are readily

available to the public. We contrasted their performance with that of two established

techniques, FreeSurfer-Aseg and FSL-FIRST, using three-dimensional T1-weighted

MRI scans (n = 1447) procured from public databases. Our evaluation focused on

the accuracy and reproducibility of these tools in estimating hippocampal volume.

The findings suggest that both SynthSeg and TigerBx are on a par with Aseg and

FIRST in terms of segmentation accuracy and reproducibility, but offer a significant

advantage in processing speed, generating results in less than 1 min compared with

several minutes to hours for the latter tools. In terms of Alzheimer's disease

classification based on the hippocampal atrophy rate, SynthSeg and TigerBx exhibited

superior performance. In conclusion, we evaluated the capabilities of two deep

learning-based segmentation techniques. The results underscore their potential value

in clinical and research environments, particularly when investigating neurological

conditions associated with hippocampal structures.
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1 | INTRODUCTION

Recent advancements in neuroimaging, such as high-resolution magnetic resonance imaging (MRI) scans, have enabled accurate and reproducible

measurements of hippocampal volume in vivo. Both hippocampal volume and the atrophy rate have been associated with numerous neurological

conditions, including Alzheimer's disease (AD),1,2 autism spectrum disorder,3,4 major depressive disorder,5 and temporal lobe epilepsy.6–8 For

example, patients with AD exhibit significantly faster hippocampal volume loss compared with healthy aging individuals.9 Furthermore, patients

with major depressive disorder have been found to possess smaller hippocampal volumes.5 Accurate hippocampal segmentation allows

Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; ASSD, average symmetric surface distance; CANDI, Child and Adolescent NeuroDevelopment

Initiative; CNN, convolutional neural network; DSC, Dice similarity coefficient; HVLR, hippocampal volume loss rate; MCI, mild cognitive impairment; mHV, mean hippocampal volume; MMSE,
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researchers to assess brain anatomy, and to monitor disease progression. A swift and precise segmentation procedure can facilitate early identifi-

cation and diagnosis of these diseases.

As advancements in computer algorithms continue, researchers have increasingly utilized automatic software to delineate bilateral hippocam-

pal regions and estimate their volumes from high-resolution three-dimensional (3D) T1-weighted (T1w) MRI scans.10 For the investigation of AD,

these derived hippocampal volumes can then be employed to differentiate AD from mild cognitive impairment (MCI) and to longitudinally investi-

gate volume reductions in the hippocampus associated with cognitive decline. FreeSurfer11 and FSL12 are two widely adopted software packages

for brain MR image analysis. Numerous studies have validated the reliability and accuracy of these research tools,13–16 demonstrating their effec-

tiveness in estimating hippocampal volumes with 3D T1w MR images. Both tools rely on processing in template spaces, making them dependent

on accurate registration algorithms. Consequently, segmentation procedures can be time consuming because of the iterative processes involved

in the accurate registration algorithm.

Recently, deep learning-based techniques have demonstrated their efficacy for image segmentation tasks. In brain MRI applications, deep

learning has proven its effectiveness in automatically segmenting various structures, including tumors,17,18 subcortical regions,19,20 stroke

lesions,21,22 as well as gray and white matter.23,24 For example, Billot et al. introduced SynthSeg,19,25 a contrast-agnostic segmentation model that

has been integrated into the FreeSurfer software suite. Weng and Huang20 and Wang26 developed an open-source tool, TigerBx, which employs

deep learning-based techniques and a large-scale imaging database to accurately segment subcortical brain structures. Both SynthSeg and TigerBx

offer efficient execution times, typically less than 1 min, and are publicly accessible, making them practical tools for facilitating investigations

involving hippocampal segmentation. Despite their potential, these newly introduced tools warrant thorough analysis and validation to ensure

their efficacy and dependability in estimating hippocampal volumes.

In this study, our objective is to evaluate and compare the performance of deep learning-based tools, specifically SynthSeg and TigerBx, with

the well-established tools, FreeSurfer and FSL, focusing on hippocampal volume estimation and AD classification. Through this comparison, we

aim to contribute to the ongoing efforts in enhancing the investigation of brain hippocampus structure by utilizing advanced segmentation tech-

niques in brain MRI analysis.

2 | MATERIALS AND METHODS

Figure 1 presents an overview of the methodology implemented in this study. We compiled 3D T1w MRI scans from four public databases,

amassing a total of 1447 datasets. These 3D T1w images were processed using four methods to execute subcortical segmentations. Following

F IGURE 1 Schematic representation of the study methodology. The process began with the collection of 3D T1w MRI scans from four public
databases, totaling 1447 datasets. These 3D volumes were then segmented using four distinct tools to perform hippocampal segmentation and
relevant hippocampal (HC) volume indices were calculated. 3D, three-dimensional; ADNI, Alzheimer's Disease Neuroimaging Initiative; AUC, area
under the curve; CANDI, Child and Adolescent NeuroDevelopment Initiative; COV, coefficient of variation; DSC, Dice similarity coefficient;
HVLR, hippocampal volume loss rate; mHV, mean hippocampal volume; MRI, magnetic resonance imaging; RAVD, relative absolute volume
difference; RVD, relative volume difference; SIMON, Single Individual Volunteer for Multiple Observations across Networks; T1w, T1-weighted.
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this, we extracted bilateral hippocampal masks from the segmentations and computed associated hippocampal volume indices. The final stages of

our study involved evaluating the performance of the segmentation tools, assessing the accuracy of the volumetric measurements, exploring their

reproducibility, and determining the accuracy of pathology group classification based on the hippocampal volume indices. The complete proce-

dures are elaborated in the subsequent sections.

2.1 | Datasets

We gathered datasets from various public databases, as detailed in Table 1, and employed these datasets in a series of experiments. The data-

bases comprised Mindboggle-101,27 Child and Adolescent NeuroDevelopment Initiative (CANDI),28 Single Individual Volunteer for Multiple

Observations across Networks (SIMON),29,30 and Alzheimer's Disease Neuroimaging Initiative (ADNI).2 All these datasets featured 3D T1w MR

images. Each of these databases acquires informed consent from their respective participants during data collection, adhering to ethical

guidelines.

We employed the MindBoggle-101 and CANDI databases to evaluate the segmentation accuracy of the four tools. The MindBoggle-101

database consists of 20 T1w MRI scans featuring manual segmentations according to the BrainCOLOR protocol,27 whereas the CANDI database

includes T1w MRI data for 103 participants, with manual tracings performed in adherence to the Center for Morphometric Analysis protocol.28

We utilized the manual hippocampus segmentation masks from both databases as a reference to assess the segmentation accuracy of the four

tools.

SIMON offers a longitudinal MRI dataset of a healthy male from the age of 29 to 46 years, scanned in 73 sessions across various sites using

35 different scanner models. In some sessions, multiple T1w imaging scans were available. One scan of the 48th session experienced an unknown

error during the execution of the FreeSurfer pipeline. As a result, we incorporated 94 scans into our experiments in this study.

Data used for evaluating AD classification were obtained from the ADNI database (https://adni.loni.usc.edu/). ADNI, initiated in 2003, is

a public–private partnership led by Principal Investigator Dr. Michael W. Weiner. The ADNI study collected various data types for quantitative

analysis, including MRI, positron emission tomography, genetics, cognitive tests, cerebrospinal fluid, and blood biomarkers. The primary goal is

to investigate whether imaging and biological markers can be combined effectively to monitor the progression of MCI and early AD. For up-

to-date information, see https://adni.loni.usc.edu/. It consists of databases such as ADNI 1, 2, 3, and ADNI-GO. In this study, we gathered

615 subjects from the ADNI 1 database, which included AD (n = 125), MCI (n = 301), and normal aging (NL; n = 189) participants. In addition

TABLE 1 Summary of databases employed in this study.

Database Subject Datasets Evaluation Vendors TR/TE (ms) Sequence

MindBoggle 101 20 20 Segmentation accuracy Siemens 9.7/4 3D T1w

CANDI 103 103 Segmentation accuracy GE 10/3 3D T1w

SIMON 1 94 Longitudinal reproducibility Philips

GE

Siemens

7.3/3.3

6.7/2.9

2300/2.98

3D T1w

ADNI 615 1230 Classification of AD Philips 8.6/4 3D T1w

GE 8.5–10.4/3.8–4.1

Siemens 2400–3000/3.5–3.87

Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; CANDI, Child and Adolescent NeuroDevelopment Initiative;

SIMON, Single Individual Volunteer for Multiple Observations across Networks; T1w, T1-weighted.

TABLE 2 Demographic data summary from the ADNI database.

Summary of baseline data

NL MCI AD

n 189 301 125

Women (%) 49.2 35.9 48.8

Age (years) 76.1 ± 5.0 74.9 ± 7.0 74.8 ± 7.6

MMSE 29.1 ± 1.0 27.0 ± 1.8 23.5 ± 1.9

Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; MCI, mild cognitive impairment; MMSE, Mini-Mental State

Examination; NL, normal aging.

WANG ET AL. 3 of 13

 10991492, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/nbm

.5169 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [01/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/


to the initial baseline data, we also chose the datasets acquired during the 12-month follow-up visit. This enabled us to assess the short-term

loss in hippocampal volume among the AD, MCI, and NL groups, using the four segmentation tools. Table 2 provides a summary of the demo-

graphic data from the ADNI at baseline, which include cognitive impairment scores as assessed by the Mini-Mental State Examination

(MMSE).

2.2 | Hippocampal segmentation tools

We utilized four tools for hippocampal segmentation: Aseg, FIRST, SynthSeg, and TigerBx. The specifics of each tool are outlined in Table 3. We

employed the default parameters and used raw T1w images without preprocessing for all four segmentation methods in our study, thereby ensur-

ing consistency and reproducibility in our analysis. Aseg refers to a specific type of brain segmentation result generated by FreeSurfer's pipeline

“recon-all” (version 7.3.2; https://surfer.nmr.mgh.harvard.edu/). The pipeline involves several processing steps for brain segmentation, including

intensity normalization, skull-stripping, gray and white matter segmentation, normalization to template space, and refinement of the pial surface.

It employs a Bayesian framework to calculate the likelihood of each voxel being part of a specific brain structure. The pipeline produces a wide

range of brain segmentation outputs and surface information. For our analysis, we extracted the bilateral hippocampal masks from the aseg.mgz

output file, with the resulting segmentation referred to as Aseg.

FSL (version 6.0; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) is a versatile neuroimaging analysis tool,12 and FIRST (FMRIB's Integrated Registra-

tion and Segmentation Tool) is one of its pipelines dedicated to subcortical segmentation.31 The pipeline (run_first_all) consists of a series of image

preprocessing and registration steps, with the subcortical segmentation based on a Bayesian framework built using manually annotated masks.

FIRST generates 15 masks of brain regions, including subcortical regions, brain stem, and the fourth ventricle, from which we extracted bilateral

hippocampal masks. The obtained segmentation is referred to as FIRST.

SynthSeg19,25 and TigerBx20,26 both employ the 3D U-Net model,32 a convolutional neural network (CNN) extensively used for segmentation

tasks in the medical imaging field.17,22,33 These tools perform segmentation in the native space of brain volume, thereby circumventing the

time-consuming computation involved in image registration. SynthSeg is trained with synthetic brain data, generated using a Gaussian mixture

generative model, and employs a domain randomization strategy. This allows for contrast-agnostic segmentation of 3D brain volumes. SynthSeg's

effectiveness in analyzing heterogeneous clinical data was demonstrated in a previous study.25 It is now incorporated in the recent release of

FreeSurfer (version 7.3.2; https://surfer.nmr.mgh.harvard.edu/fswiki/SynthSeg). We used the built-in command line tool (mri_synthseg) to perform

the segmentation.

On the other hand, TigerBx (tissue mask generation for brain extraction, version 0.1.12a; https://github.com/htylab/tigerbx) is trained on

large-scale databases, which exclusively comprise T1 images, collected from publicly available cohorts.20 It can work as a standalone application

or serve as a module in the Python software environment. We used the deep gray matter segmentation option (tigerbx -d) to generate masks con-

taining hippocampal regions. The segmentation masks produced by all four methods were resampled to align with the original voxel size of the

3D T1w volumes for subsequent evaluation processes.

2.3 | Evaluation: segmentation performance and reproducibility

This study used two metrics to evaluate each model's performance: (i) the Dice similarity coefficient (DSC); and (ii) average symmetric surface dis-

tance (ASSD).34 The DSC and ASSD values are employed to measure the similarity between the ground-truth label (manually traced label) and the

segmentation results. The DSC value ranges from 0 to 1, with a higher value indicating more accurate segmentation. The ASSD value, ranging

from 0 to infinity, quantifies the average surface distance between segmented masks and their corresponding ground-truth masks. A lower ASSD

value indicates better segmentation accuracy. To evaluate the longitudinal variations in hippocampal volumes within the SIMON datasets, we

employed the coefficient of variation (COV) as a measure of variability for each segmentation tool. This involved calculating the COV by dividing

the standard deviation of the hippocampal volumes by their respective mean values for each tool.

TABLE 3 Summary of hippocampal segmentation tools.

Tool Method Skull-stripping Registration to template

Aseg Bayesian Yes Yes

FIRST Bayesian Yes Yes

SynthSeg 3D U-Net No No

TigerBx 3D U-Net No No

4 of 13 WANG ET AL.
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2.4 | Evaluation: hippocampal volume and loss rate

We performed hippocampal segmentation on datasets using the four segmentation tools and calculated hippocampal volumes by summing the

segmented hippocampal voxels and adjusting for the corresponding voxel size. Both left and right hippocampal volumes were estimated, and

the average of these two volumes is referred to as the mean hippocampal volume (mHV) in this study. To estimate the accuracy of hippocampal

volume estimation, we calculated two key metrics: the relative absolute volume difference (RAVD) and the relative volume difference (RVD).

These metrics were computed using the following equations: (i) RAVD = j(Vp - Vm)j/ Vm; and (ii) RVD = (Vp � Vm)/Vm. In these equations, Vp

denotes the predicted hippocampal volume as determined by the segmentation tools, and Vm refers to the volume estimated from the manual

tracing, which serves as the ground truth. From the ADNI1 database, we selected two scans per subject (at baseline and 12 months) and calcu-

lated the short-term mHV loss rate (i.e., the hippocampal volume loss rate [HVLR]) for the NL, MCI, and AD groups. The HVLR is calculated as the

annual percentage reduction in the mHV. The equation used is: HVLR = (V0m � V12m)/V0m, where V0m represents the baseline mHV, and V12m is

the mHV estimated from a follow-up scan 12 months later.

3 | RESULTS

3.1 | Segmentation performance

Figure 2 displays the hippocampal segmentation results on the test datasets superimposed on T1w images. For each participant, we calculated

the mean DSC values across the four methods. We then sorted the samples according to the mean DSC values and selected the nth quartile for

illustration in this figure. The number beneath each image represents the corresponding DSC value. Although all tools produced reliable segmenta-

tion outcomes, there were 14 instances from which FIRST derived empty masks. The worst result (i.e., Q0) of FIRST did not generate labels on

both hippocampi, while the remaining three methods obtained DSC values from 0.73 to 0.79. Figure 3A presents the DSC values of bilateral hip-

pocampi (123 datasets � 2 hippocampi = 246 samples) obtained using the four segmentation tools (4 methods � 246 samples = 984 points).

Scattered FIRST results (orange) with DSC values of zero indicate failure cases. Figure 3B displays an enlarged view with a zoomed y-axis. It

becomes evident that the highest DSC values for individual samples are predominantly generated by FIRST and TigerBx. This suggests that FIRST

has the potential to be highly accurate if users can manually address the exceptional failures caused by registration issues.

F IGURE 2 Hippocampal segmentation results on test datasets superimposed on T1-weighted images. The nth quartile of mean DSC values
was selected for illustration. The number beneath each image represents the corresponding DSC value. DSC, Dice similarity coefficient.

WANG ET AL. 5 of 13

 10991492, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/nbm

.5169 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [01/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Tables 4 and 5 display the average DSC and ASSD values for hippocampal segmentation performance across the four tools, accounting for

both the complete dataset (n = 123) and the valid cases only (n = 109). When considering all datasets, both SynthSeg and TigerBx outperformed

Aseg and FIRST in terms of DSC and ASSD values. TigerBx notably demonstrated higher DSC and lower ASSD values compared with the other

three methods. After excluding the failed samples, FIRST presented both metrics significantly superior to Aseg and SynthSeg (p < 0.01, Wilcoxon

signed-rank test), while showing results on a par with TigerBx.

Table 6 displays the average RAVD and RVD values of the test datasets including only the valid samples (n = 109). Consistent with the evalu-

ation of DSC values, FIRST and TigerBx produced significantly lower RAVD values (p < 0.01, t-test) than Aseg and SynthSeg. The RVD values are

all positive, suggesting that the tools tend to overestimate hippocampal volumes compared with the manual drawing method. When excluding the

failed segmentation cases of FIRST, it actually produces the highest hippocampal volumetric accuracy among the four tools.

3.2 | Long-term reproducibility of heterogeneous datasets

We utilized the SIMON datasets (n = 94), obtained from a healthy male from the age of 29 to 46 years in 35 MRI scanners, to assess the repro-

ducibility of the automatic segmentation methods across multiple scanner models and institutions. An experienced radiologist (KKH) delineated

F IGURE 3 (A) DSC values of bilateral hippocampi obtained using the four segmentation tools on 123 datasets (4 methods � 123 datasets �
2 hippocampi = 984 points). Scattered FIRST results (orange) with DSC values of zero indicate failure cases. (B) The enlarged view with a zoomed
y-axis. The highest DSC values for individual samples are predominantly generated by FIRST and TigerBx. DSC, Dice similarity coefficient.

TABLE 4 Average DSC values for segmentation performance.

DSC

All (n = 123)

DSC

Valid cases (n = 109)

LHC RHC LHC RHC

Aseg 0.79 ± 0.03 0.79 ± 0.02 0.79 ± 0.03*§† 0.79 ± 0.02*§†

FIRST 0.73 ± 0.23 0.73 ± 0.27 0.83 ± 0.05 0.82 ± 0.05

SynthSeg 0.81 ± 0.02 0.81 ± 0.02 0.81 ± 0.02*† 0.81 ± 0.02*†

TigerBx 0.83 ± 0.03 0.83 ± 0.02 0.83 ± 0.02 0.83 ± 0.02

Note: The assessment of differences was exclusively conducted on valid cases (n = 109) using the Wilcoxon signed-rank test.

Abbreviations: DSC, Dice similarity coefficient; LHC, left hippocampus; RHC, right hippocampus.
†Significantly lower than FIRST (p < 0.01).
§Significantly lower than SynthSeg (p < 0.01).

*Significantly lower than TigerBx (p < 0.01).

6 of 13 WANG ET AL.
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hippocampal masks in select SIMON datasets, focusing on sessions 1, 15, 30, 45, 60, and 73. The COV across the mHV values of these sessions

was at 2.6%, suggesting a minimal change in hippocampal volume for this healthy individual over the course of 17 years. We then performed

automatic hippocampal segmentation on the SIMON datasets using the four tools and calculated the corresponding mHV values. Figure 4 displays

the time series of mHV values obtained from the 94 scans. The average mHV values across the time series are 4660 ± 168, 3909 ± 141,

TABLE 5 ASSD values for segmentation performance.

ASSD

All (n = 123)

ASSD

Valid cases (n = 109)

LHC RHC LHC RHC

Aseg 0.73 ± 0.13 0.71 ± 0.09 0.73 ± 0.13*§† 0.71 ± 0.09*§†

FIRST 3.74 ± 9.79 3.66 ± 9.41 0.63 ± 0.26 0.65 ± 0.30

SynthSeg 0.68 ± 0.10 0.68 ± 0.09 0.68 ± 0.10*† 0.68 ± 0.09*†

TigerBx 0.65 ± 0.11 0.64 ± 0.08 0.65 ± 0.11† 0.64 ± 0.08

Note: The assessment of differences was exclusively conducted on valid cases (n = 109) using the Wilcoxon signed-rank test.

Abbreviations: ASSD, average symmetric surface distance; LHC, left hippocampus; RHC, right hippocampus.
†Significantly higher than FIRST (p < 0.01).
§Significantly higher than SynthSeg (p < 0.01).

*Significantly higher than TigerBx (p < 0.01).

TABLE 6 Average RAVD and RVD values for hippocampal volume estimation.

RAVD (%) (n = 109) RVD (%) (n = 109)

LHC RHC LHC RHC

Aseg 18 ± 10*§† 17 ± 8*§† 18 ± 10*§† 17 ± 9*§†

FIRST 9 ± 7 10 ± 8 5 ± 10 7 ± 10

SynthSeg 14 ± 9*† 12 ± 9*† 14 ± 9*† 12 ± 9*†

TigerBx 9 ± 7 10 ± 6 8 ± 8† 10 ± 7†

Note: Statistical analysis was carried out exclusively on valid cases (n = 109). Abbreviations: LHC, left hippocampus; RAVD, relative absolute volume

difference; RHC, right hippocampus; RVD, relative volume difference.
†Significantly higher than FIRST (p < 0.01, Wilcoxon signed-rank test).
§Significantly higher than SynthSeg (p < 0.01, Wilcoxon signed-rank test).

*Significantly higher than TigerBx (p < 0.01, Wilcoxon signed-rank test).

F IGURE 4 Long-term reproducibility of hippocampal volume estimation using the SIMON dataset. The time-series plot shows the mHV
values obtained for 94 scans from a single healthy male participant over 17 years, segmented using Aseg, FIRST, SynthSeg, and TigerBx. Despite
variations in average mHV values across the methods, all four tools demonstrated low coefficients of variation (less than 4%), indicating their
consistency in hippocampal volume estimation over time. mHV, mean hippocampal volume; SIMON, Single Individual Volunteer for Multiple
Observations across Networks.
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5150 ± 101, and 4361 ± 75 mm3 for Aseg, FIRST, SynthSeg, and TigerBx, respectively. The resultant COVs were 3.60%, 3.60%, 1.95%, and

1.71% for each tool, respectively. Although the average mHV values vary among the four methods (ranging from 3909 to 5150 mm3), they all pro-

duced mHV variations of less than 4%. The reproducibility of the deep learning-based methods outperformed Aseg and FIRST.

3.3 | AD classification: mHV

We employed the four methods to segment the collected ADNI datasets (n = 615), which comprised two scans per subject (baseline and

12 months). We subsequently calculated the baseline mHV for the three groups (NL, MCI, and AD). Figure 5A displays the boxplot of baseline

mHV values obtained from the four methods, highlighting a distinct stepped trend in the order of the NL, MCI, and AD groups. The mHV values

showed significant differences (p < 0.01, t-test) in all comparisons between groups. Figure 6A presents the receiver operating curve analysis of

classification performance between groups using mHV. The area under the curve (AUC) values for the three comparisons, namely, NL-MCI (NL vs.

MCI), NL-AD (NL vs. AD), and MCI-AD (MCI vs. AD), ranged from 0.71 to 0.74, from 0.83 to 0.87, and from 0.66 to 0.68, respectively. The results

demonstrated that the mHV values obtained using the four tools can all effectively distinguish the groups, with the classification between NL and

AD exhibiting the highest accuracy. SynthSeg and TigerBx generate results comparable with the two established methods.

3.4 | AD classification: HVLR

Using the longitudinal two scans (baseline and 12-month) of each participant, we calculated the mHV for both time points and determined the

HVLR for each participant based on the reduction in mHV. Figure 5B presents the results obtained from the four tools. The boxplots exhibit a sim-

ilar stepped trend as observed in the mHV results, indicating an increasing mHV reduction rate in the order of NL, MCI, and AD. The HVLR values

F IGURE 5 Boxplots of (A) Baseline mHV, and (B) HVLR values for the NL, MCI, and AD groups obtained from the four segmentation
methods (Aseg, FIRST, SynthSeg, and TigerBx). Both plots reveal a noticeable stepped trend in the sequence of the NL, MCI, and AD groups. The
mHV values demonstrated significant differences (p < 0.01, t-test) in all comparisons between groups. Significant differences from the NL group
are marked with asterisks (p < 0.01, t-test), and significant differences from the MCI group are marked with diamonds (p < 0.01, t-test). AD,
Alzheimer's disease; HVLR, hippocampal volume loss rate; MCI, mild cognitive impairment; mHV, mean hippocampal volume; NL, normal aging.
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obtained by SynthSeg and TigerBx revealed significant differences (p < 0.01, t-test) in all comparisons between the groups. Figure 6B illustrates

the receiver operating curve analysis of the classification performance between groups using HVLR. Among the four tools, SynthSeg and TigerBx

display the superior AUC values in all the group comparisons.

3.5 | Computation time

In this study, we compared the computation time of the four tools using 10 randomly selected datasets from the ADNI1 database. The evaluations

were conducted on a personal computer equipped with an Intel i7-9700K CPU, 64 GB RAM, running Ubuntu 20.04.2 LTS operating system. All

tools were operated in CPU-only mode, processing each dataset individually. The average computation time per dataset was 188 ± 7 min,

122 ± 9 s, 58 ± 1 s, and 28 ± 0 s for Aseg, FIRST, SynthSeg, and TigerBx, respectively. Notably, SynthSeg and TigerBx achieved hippocampal seg-

mentation considerably faster than Aseg and FIRST.

4 | DISCUSSION

In the domain of deep-learning applications within medical imaging, because of the limited size of training datasets, the reliability of the models in

handling cross-institutional datasets remains a question. A significant challenge is the difficulty in fairly comparing performances across different

studies, as each is often validated on distinct datasets. This study focuses on conducting an equitable comparison across the four methods,

encompassing both established and deep learning-based tools, using a uniform set of validation datasets from multiple institutions processed

automatically without any preprocessing of the original data. In this study, we evaluated and compared the performance of the segmentation tools

using the MindBoggle-101, CANDI, and SIMON datasets. Moreover, we assessed their ability to accurately estimate mHV and HVLR for classify-

ing participant groups in the ADNI datasets.

F IGURE 6 Receiver operating curve analysis of classification performance between the groups using (A) mHV, and (B) HVLR values obtained
from the four segmentation methods. A, F, S, and T denote Aseg, FIRST, SynthSeg, and TigerBx, respectively. The AUC values for the three
comparisons (NL-MCI, NL-AD, and MCI-AD) are shown. FIRST, SynthSeg, and TigerBx attained comparable AUC values across all classification
tasks relying on mHV, with SynthSeg and TigerBx notably surpassing Aseg and FIRST when using HVLR for the classification tasks. AD,
Alzheimer's disease; AUC, area under the curve; HVLR, hippocampal volume loss rate; MCI, mild cognitive impairment; mHV, mean hippocampal
volume; NL, normal aging.
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Our results indicate that SynthSeg and TigerBx exhibited superior performance in terms of DSC values, outperforming both Aseg and FIRST.

It is important to note that the lower performance of FIRST was largely due to a number of failed segmentations. Based on our data, we observed

that issues with the FIRST algorithm often stemmed from image registration steps. When these failed cases were excluded, FIRST's accuracy was

comparable with the other three tools. In this condition, the RVD and RAVD analyses suggested that FIRST and TigerBx provided significantly

lower RAVD values (9%–10%) compared with Aseg and SynthSeg (12%–18%), indicating enhanced accuracy in volume estimation. However, all

tools showed a tendency to overestimate hippocampal volume, as demonstrated by RVD values ranging from 5% to 18%.

We also evaluated the long-term reproducibility of the methods using the SIMON dataset. Despite some variations in the average mHV

values produced by the four tools, all methods exhibited COVs less than 4%, indicating their ability to generate consistent results over time, a cru-

cial factor for longitudinal studies. The deep learning-based tools, SynthSeg and TigerBx, demonstrated COVs of less than 2%, indicating that the

consistency of these new tools is noteworthy and has potential for further application in hippocampal segmentation. The variation in average

mHVs, which ranges from 3909 to 5150 mm3 across the four segmentation methods, as well as the overestimation observed in the RVD analysis

mentioned above, could be attributed to differences in optimization procedures and the reference ground truths used in creating these tech-

niques. Although identifying the exact reasons for these discrepancies is challenging, our study's head-to-head comparison provides a benchmark

for understanding measurement differences across tools, emphasizing the importance of recognizing these variations in hippocampal volume

assessments in healthy subjects.

A prominent feature of AD is the reduction in hippocampal volume, which is closely related to the decline in cognitive function in the dis-

ease.35 In our analysis of ADNI datasets, the mHV values obtained using the four tools were capable of distinguishing between the groups, with

the comparison between the groups showing a significant difference (p < 0.01, t-test). The AUC values for classification between groups are in

the order of NL-AD, NL-MCI, and MCI-AD. Among the four tools, SynthSeg achieved the highest AUC values for all classification tasks (NL-MCI:

0.74, NL-AD: 0.87, MCI-AD: 0.68), indicating its superior performance in classifying different cognitive impairment levels based on hippocampal

volume.

The assessment of short-term hippocampal volume loss in the ADNI dataset demonstrated an increasing HVLR trend from the NL to the MCI

and AD groups across all tools, aligning with prior findings that the hippocampal atrophy rate correlates with cognitive decline and the progression

of AD.35 In the HVLR analysis, SynthSeg and TigerBx demonstrated superior AUC values when comparing the three groups: NL-MCI (AUC = 0.65

and 0.62), NL-AD (AUC = 0.75 and 0.75), and MCI-AD (AUC = 0.62 and 0.65), respectively. This suggests that SynthSeg and TigerBx could

potentially offer superior performance in detecting longitudinal changes in hippocampal volume among the participant groups. This finding aligns

with the reproducibility assessment of the four tools, in which the COV values indicate that SynthSeg and TigerBx generate consistent mHV

values. Accurate estimation of hippocampal volume loss over time is crucial for monitoring disease progression, thus suggesting that both of the

deep learning-based methods are suitable segmentation tools for future studies investigating the progression of AD. Comparing HVLR and mHV

in the current study, we found that despite HVLR exhibiting higher values in AD datasets, it was mHV that showed a superior performance in AD

classification, with the best NL-AD AUC scores being 0.87 for mHV and 0.75 for HVLR. The underperformance of HVLR might be due to its calcu-

lation method, which, based on the difference between two mHV measurements, can introduce additional noise influenced by the stability and

precision of each mHV measurement.

It is worth mentioning that our study has some limitations. The analysis was performed on datasets collected from four databases, which may

not be representative of other populations or imaging protocols. Additionally, the performance of these tools may be influenced by factors such

as MRI hardware types, imaging parameters, and image processing procedures. Therefore, it is essential to validate the results on other cohorts,

such as OASIS36 or HCP.37 An additional limitation is that we did not include other established tools (e.g., ANTs38 and STAPLE39) or deep

learning-based tools.40–43 Additionally, there are several alternative approaches for hippocampal segmentation using FreeSurfer, such as

SamSeg.44 The comparative analysis of these tools, along with their evaluations on additional cohorts, could provide a crucial reference for future

researchers considering a transition from well-established tools to deep-learning methods in hippocampal segmentation studies. These compari-

sons and evaluations merit further investigation.

In conclusion, our study demonstrates the solid performance of the deep learning-based tools, SynthSeg and TigerBx, in the estimation of hip-

pocampal volume and the analysis of short-term hippocampal volume loss. These methods, not only exhibiting comparable segmentation perfor-

mance with established tools, but also offering faster computational speeds, indicated their potential for hippocampal segmentation. This is

particularly relevant in the clinical applications of AD, planning epilepsy treatments, assessing psychiatric disorders, and other neurological condi-

tions involving hippocampal changes. While further validation in larger and more diverse cohorts remains crucial, this study points to the promise

of deep learning-based methods for efficient and accurate hippocampal segmentation in neuroimaging studies, achievable in less than 1 min.

These findings suggest that deep learning-based tools are becoming increasingly reliable and can serve as suitable segmentation tools for future

research focusing on monitoring disease progression using hippocampal volume as a biomarker.
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